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Abstract. Two simple feedforward neural networks (MLPs) are trained to classify wet and dry periods using signal attenuation

from commercial microwave links (CMLs) as predictors and high temporal resolution reference data as target. MLPGA is

trained against nearby rain gauges and MLPRA is trained against gauge-adjusted weather radar. Both MLPs perform better

than existing methods, showcasing their effectiveness in capturing the intermittent behaviour of rainfall. This study is the first

using both radar and rain gauges for training and testing for CML wet-dry classification. Where previous studies has mainly5

focused on hourly reference data, our findings show that it is possible to predict wet and dry periods with a higher temporal

precision.

1 Introduction

By exploiting the relation of rainfall intensity to signal attenuation, commercial microwave links (CMLs) can be used to

estimate path-average rainfall between telecommunication towers (Messer et al., 2006; Leijnse et al., 2007). As the signal is also10

attenuated by factors other than rain, such as air humidity, these non-rainy factors must be taken into account in what is often

called the baseline attenuation. Rain-induced attenuation can then be estimated by subtracting the estimated baseline from the

total loss, where the baseline is typically estimated from the mean signal attenuation shortly before the rainfall event (Chwala

and Kunstmann, 2019). This makes rain event detection a crucial step in deriving rainfall rates from CMLs. CML signal loss is

recorded differently depending on the network operator and can for instance be available as instantaneous measurements every15

minute. Another popular format is to record the minimum and maximum signal loss over a period, typically 15 minutes. In

this work, we focus on instantaneously sampled CML data as this data is becoming more and more available, see for instance

Andersson et al. (2022).
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During wet periods, the CML signal loss tends to fluctuate more than during dry periods. Based on this, a simple method for

rain event detection was developed by Schleiss and Berne (2010). They suggested using these fluctuations to predict wet periods20

by taking the standard deviation of a 60-minute rolling window and setting time steps with values above a certain threshold

to wet. This threshold is different between CMLs, but can be derived from local climate characteristics. Graf et al. (2020)

expanded this method by recognizing that climate characteristics is not necessarily valid for different locations, individual

years and in particular specific rainy periods that might be of interest. They proposed to estimate the threshold by computing

the 80 % quantile of the 60-minute rolling standard deviation for each CML and multiplying this number by a constant that25

was found to be similar for all CMLs in the study. A more data-driven approach was explored by Polz et al. (2020). They

trained a convolutional neural network (CNN) to detect wet periods using 800 CMLs in Germany. As a reference, they used the

gauge-adjusted radar product RADOLAN-RW from Germany’s National Meteorological Service (DWD) which has an hourly

resolution. Another approach is to include the signal loss from nearby CMLs (Overeem et al., 2011). This method was shown

to work for dense CML networks. The literature describes several other approaches (Habi and Messer, 2018; Reller et al.,30

2011; Rayitsfeld et al., 2012; Wang et al., 2012).

Most of the mentioned methods have been evaluated using hourly reference data. This might be a reasonable approach as

rainfall detection is mostly used for estimating the baseline, which is typically set as a constant throughout a rainfall event

(Chwala and Kunstmann, 2019; Uijlenhoet et al., 2018; Messer and Sendik, 2015). However, existing methods are not opti-

mized for predicting rainfall on a higher temporal resolution, and thus, the predictions might not reflect the true intermittency35

of rainfall. Predicting too long wet periods could result in the CML baseline not being adapted to new time steps, possibly

introducing a bias in the rainfall retrieval. Further, a drawback of predicting too long rainy periods is that some of the predicted

rainy time steps could contain non-liquid precipitation. As dry snow induces a very low signal attenuation, these time steps

appears as dry in the CML time series. In an event where the precipitation type changes between rain and snow, classifying dry

snow events in the CML signal as dry is important as the presence of precipitation in a nearby rain gauge could then indicate40

that it is in fact snowing.

In this paper, we present two methods to better detect wet periods in highly intermittent rainfall. One method is trained on

radar reference data and the other method is trained on rain gauge reference data. Both methods are tested against rain gauge

and radar data, highlighting their differences. We also examine the performance of the developed methods in comparison to

existing approaches, aiming to gain a clearer understanding of the distinctions between these various methodologies.45

2 Methods

2.1 Data

A large dataset with 3901 CMLs from Germany was used, providing transmitted and received signal levels with a temporal

resolution of one minute from 01-07-2021 to 31-07-2021. The total signal loss (TL) was computed by subtracting the transmit-

ted signal level from the received signal level. Each CML consists of two time series called sublinks, reflecting the signal loss50

in the beams going from location 0 to 1 and vice versa. More information on this dataset can be found in Graf et al. (2020). As
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ground truth, two different sources were explored. The first used rain gauges near the CMLs provided by DWD. The rain gauge

data was provided with a temporal resolution of one minute and volume resolution of 0.01 mm. We consider a minute to be

wet if the rain gauge records any rainfall. The other source was the radar product RADKLIM-YW (Winterrath et al., 2018). This

product from DWD is a gauge-adjusted, climatologically corrected product with a temporal resolution of 5 minutes. For the55

comparison with CML data, the radar product was averaged over the CML path intersections, with each grid value weighted

by the length of the CML path in each grid cell. For comparison of the path-averaged RADKLIM-YW reference and the CML

rainfall estimates, RADKLIM-YW was resampled from a 5-minute resolution to a 1-minute resolution by linear interpolation

and then dividing the rainfall sums by 5. To make it comparable to the rain gauges, minutes with rainfall above 0.01 mm were

set to wet.60

2.2 Neural network

In our approach, we have used a simple feed-forward neural network provided by the python library sklearn (Pedregosa et al.,

2011). This network consists of an input layer, fully connected hidden layers, and an output layer. Networks with simple

architecture of this type are often referred to as a Multilayer perceptron (MLP). The input layer takes the total signal loss from

a 40 time steps long centered moving window over both sublinks. The CML predictor data is organized in a so-called design65

matrix (Equation 1) where tls1,t and tls2,t represents the total signal loss at time step t for sublink 1 and sublink 2 respectively.




tls1,t0−20 . . . tls1,t0+20 tls2,t0−20 . . . tls2,t0+20

...
...

...
...

tls1,ti−20 . . . tls1,ti+20 tls2,ti−20 . . . tls2,ti+20

...
...

...
...

tls1,tn−20 . . . tls1,tn+20 tls2,tn−20 . . . tls2,tn+20




(1)

We experimented with longer windows, but could not find any improvements by increasing the window size beyond 40 time

steps. There was also an improvement from using both sublinks rather than one. We do not show these findings in detail in this70

note.

As pre-processing, we subtracted the 12 hours centered rolling median from the signal level for each CML. This removes

longer trends from the signal level making the time series stationary. We experimented with other detrending methods such as

differencing, but got poorer results.

Next, two approaches were explored, one where we trained the neural network against radar data (MLPRA) and one where75

we trained the MLP against rain gauge data (MLPGA). For testing, the optimal MLPRA and MLPGA were integrated in to

pycomlink, a python library for CML processing (Chwala et al., 2023). Since the current pycomlink environment does not

support sklearn, the weights and network architecture were exported to tensorflow using the Keras API (Abadi et al., 2015).

The final testing was performed by loading the exported MLPs from the pycomlink environment.
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2.3 Reference methods80

Two reference methods were used for comparing the MLP results. The σ80 method from Graf et al. (2020) and the CNN

method from Polz et al. (2020). Both methods are described in the introduction and can be run from pycomlink.

2.4 Performance metrics

The performance of the methods was evaluated by recording the predicted CML wet and dry periods against the reference data

(rain gauge or radar) in a confusion matrix. In our case, the confusion matrix is a 2x2 matrix listing the number of true positives85

(TP), true negatives (TN), false positives (FP), and false negatives (FN). Although no perfect performance metric exists, a

balanced way of describing the confusion matrix as a single number can be done by the Matthews correlation coefficient

(MCC) (Chicco and Jurman, 2020). The MCC is a diagnostic that gives a number between -1 and 1, where 1 represents a

perfect prediction, 0 is no better than a random prediction, and -1 is a perfect disagreement with the reference.

2.5 CMLs close to rain gauges90

Pairs of CMLs and rain gauges that are closer to each other than 5 km were selected for training and testing the MLPs. This

resulted in 395 pairs of CMLs and rain gauges spread out across Germany. All pairs are covered by the RADKLIM-YW radar

product.

2.6 Train-test split

In order to assess how well the models performed, the CML data was split into a training set and a test set. Due to, for instance,95

noisy CMLs, malfunctioning rain gauges, or spatio-temporal uncertainties, some CMLs showed a poor correlation with the

rain gauges or the radar. As these pairs could result in poor training data, we opted to exclusively include pairs with high

MCC in our training set. We selected training pairs for MLPRA and MLPGA by predicting the CML wet periods using the σ80

method. The top 26 CML-radar pairs with the highest MCC, estimated using radar data, were chosen for MLPRA. MLPGA

used CML-rain gauge pairs with the highest MCC, estimated using rain gauge. The remaining 369 pairs were used for testing.100

A possible drawback of this approach is that the MLPs are not trained on noisy CMLs, hindering their effectiveness in dealing

with erratic signal fluctuations. However, erratic CMLs are usually removed before the rain event detection step for instance

by removing CMLs where the rolling standard deviation of the total loss exceeds 2 dB at least 10% of the time or where the 1

hour rolling standard deviation of the of the total loss exceeds 0.8 dB at least 33% of the time (Graf et al., 2020; Blettner et al.,

2023).105

2.7 Hyperparameter estimation and cross-validation

During training, the MLP classifier can be tuned using several hyperparameters such as activation function, hidden layers,

initial learning rate, and L2 regularization. The optimal hyperparameters were found by using k-fold cross-validation over a

grid search over the hyperparameter values listed in Table 1. We performed k-fold cross-validation by splitting the CMLs in
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Table 1. MLP hyperparameters used in grid search

Hyperparameter Values

Hidden Layer Sizes [[1], [10], [20], [70], [5, 5], [10, 10],

[50, 50], [100, 100]]

Activation Function [’relu’, ’logistic’]

Regularization [0., 0.175, 0.35, 0.525, 0.7]

Initial Learning Rate [0.0000001, 0.00000147, 0.00002154,

0.00031623, 0.00464159, 0.06812921,

1]

the training data into 5 folds and iteratively trained the MLP on 4 folds of data and validated on the 5th fold using the MCC.110

The final score is the mean of all 5 validation MCC scores.

The rainfall time series is characterized by extended periods of no rain, leading to an imbalance that can impede the effec-

tiveness of neural network training. A common method to address this issue is random undersampling, where samples from the

majority class are discarded to create a balanced dataset (Hoens and Chawla, 2013). However, rainfall time series often include

short intermittent dry periods within longer events, which are of particular interest in our approach. If we were to use random115

undersampling, these events might be underrepresented in the training dataset. Recognizing that the total signal loss moving

window can include rainy time steps during dry periods close to wet ones, we have adopted a modified undersampling strat-

egy. Specifically, we only discard dry steps more than 30 minutes away from any rainfall events as detected by the reference

methods.

3 Results and discussion120

3.1 Training the MLP

The MCC, given optimal given optimal initial learning rate and regularization, as a function of an increasing number of neurons

and hidden layers for the MLPRA and the MLPGA for both activation functions is presented in Fig. 1. For each hidden layer

configuration, the optimal regularization and initial learning rate that yielded the highest mean MCC were selected and plotted

together with the minimum and maximum of all 5 folds obtained from k-fold cross-validation.125

We can observe that the MLPGA generally has a lower score than the MLPRA method. This could be because of the spatial

differences between the CMLs and rain gauges, causing errors related to spatial uncertainty. For the radar data, this spatial

representation is most likely mitigated by the comparison based on CML path-weighted intersects. Another reason could be

that the spatial averaging performed by the radar and CMLs produces less intermittent rainfall time series than what is the case

for the rain gauges, resulting in better agreement between the CML and radar.130
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Figure 1. MCC as a function of network architecture for the relu and logistic activation function. [5, 5] means two layers with 5 neurons in

each layer. The MLP was trained using k-fold cross-validation with 5 folds over 26 CML-rain gauge pairs using radar (MLPRA) and rain

gauge (MLPGA) as reference. The solid line is the mean value of the 5 folds while the shaded area shows the minimum and maximum score

of the 5 folds.

We can also observe that models using the logistic activation function generally seem to perform more consistently for all

network architectures than the relu activation function. The relu activation function has a lower score for simple network archi-

tectures (for instance [1]), but produces larger scores with increased network architecture compared to the logistic activation

function. Further, for the relu activation function with larger networks ([70] and [100, 100]), MLPRA shows a larger deviation

between the train set and validation set, indicating that the model is not generalizing very well. MLPRA has a smaller deviation135

between train and validation when the logistic activation function is used, indicating more general fits. Thus MLPRA seems

to have a good compromise between model complexity and score when using a single layer with 20 neurons and the logistic

activation function. MLPGA on the other hand has a smaller deviation between the train and validation set and provides a

good compromise between model complexity and score when using two layers with 50 neurons in each and the relu activation

function. The optimal hyperparameters for MLPRA and MLPGA are shown in Table 2.140

3.2 Testing the MLP

The MCC scatter plot density for the MLPRG and MLPRA method compared with the benchmark methods σ80 and CNN using

the radar and rain gauge test data as reference is presented in Fig. 2. For both radar and rain gauge reference we can observe
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Table 2. Optimal hyperparameters for the MLP trained with radar reference (MLPRA) and the MLP trained with rain gauge reference

(MLPGA)

Hyperparameter MLPRA MLPGA

Network architecture [20] [50, 50]

Activation function logistic relu

Regularization 0.175 0.175

Initial learning rate 0.00031623 0.00031623

Figure 2. Scatter density plot of the MCC score for the MLP trained on the rain gauge reference (MLPGA) and the MLP trained on the radar

reference (MLPRA) compared with the benchmark methods σ80 and CNN. The left plot used radar as reference and the right plot used rain

gauges as reference. CML, radar and rain gauge uses a one minute resulution. Scores were computed based on 369 CML-radar data pairs

over one month.
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that for most data pairs, the MCC score is higher when using one of the MLP methods than when using one of the reference

methods. Another observation is that MLPGA performed slightly better (median MCC of 0.59) than MLPRA (median MCC145

of 0.52) when the rain gauge was used as a reference. When the radar was used as a reference MLPRA scored slightly better

(median MCC of 0.62) than MLPGA (median MCC of 0.66). This difference could be explained by the inherent differences

in the measurement methods, where the rain gauge captures the rainfall differently than the weather radar due to for instance

wind.

In Fig. 3, Fig. 4, and Fig. 5 we plot the CML signal loss as a function of time as well as the predicted wet periods for all150

methods and the ground truth. We also plot the confusion matrix and the corresponding MCC score for each method using the

rain gauge as a reference.

Fig. 3 shows the results from a 10-hour long period for a CML where the MLPRA method (MCC: 0.71) and MLPGA method

(MCC: 0.74) outperformed the CNN method (MCC: 0.08) and the σ80 (MCC: 0.47). Looking at the CML total loss (TL)

we can observe that the CML behaves nicely with a relatively constant baseline outside of wet periods. Around time 06:00155

the radar reference (RA) shows a short wet period, while the rain gauge shows a longer highly intermittent wet period. The

intermittent behavior of the rain gauge might be due to low-intensity rainfall or smaller droplets falling into the bucket from the

collector. Both MLPs were able to detect a short wet period at this time. For the full 10 hours, the CNN in general predicts a

very long wet period, missing several dry events and leading to a poorer MCC. This is not surprising as it was trained to detect

wet events on an hourly basis. The σ80 method was better in classifying the dry events but still predicted longer wet periods160

than the MLPs. Further, MLPRA tended to predict wet periods that started shortly before the CML TL starts to rise, while the

MLPGA tended to predict wet periods shortly after the TL has started to rise. This is an interesting feature and could be due

to the rain gauges showing short breaks at the beginning of rainfall events due to low rainfall intensity. If the beginning of a

wet event has more dry minutes than wet minutes, as seen by the rain gauge, this could lead MLPGA to just predict no rain on

these occasions. It could also be due to that the radar observes rainfall before it is measured on the ground, making the MLPRA165

estimate rainfall shortly before MLPGA

Fig. 4 shows a 6-hour case for a different CML where the difference between the MLPRA and MLPGA method is easier

to spot. Like in Figure 3, MLPRA predicts the wet starting point before the MLPGA does. As in the previous case, the CNN

predicts a very long wet period, while the σ80 predict rain before and after the rain gauge and radar reference rainfall prediction.

In this instance, none of the methods can accurately predict the reference wet periods. Looking at the TL we can see that it170

increases gradually over an extended period, suggesting a longer wet period. In contrast, the reference data only indicates one

or two short wet events. This discrepancy may be attributed to very low rainfall rates, causing an elevated TL due to CML wet

antenna attenuation. However, these rates might be too small to register on the rain gauge or radar.

Fig. 3 and Fig. 4 also raise some interesting questions. The final rainfall amounts is often derived from a baseline that

is typically estimated based on the values of the dry periods before the wet event. Since these baseline values are estimated175

differently for the different methods we have explored in this study, the resulting rainfall rates are expected to vary. For instance,

if the MLPGA is used, the baseline would be placed at a higher level than if the MLPRA method was used, resulting in a lower

rainfall rate estimate. Looking at Figure 3 and the first and last rainfall event detected by MLPGA (time steps 01.00 and 08.00),
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it is clear that MLPGA predicts rainfall shortly after the TL has started to rise. If we assume that the TL in these two cases

is only affected by raindrops, then MLPGA would produce a too-high baseline estimate. MLPRA, on the other hand, seems to180

better capture the entire rainfall event and thus is might be more suitable for baseline estimation. A more detailed analysis of

these effects is beyond the scope of this paper.

In Figure 5 we have depicted the TL as well as the predicted wet periods and reference wet periods for a CML with more

erratic signal fluctuations. For σ80, multiple wet periods are estimated. While these estimated wet periods may seem plausible

when observing the TL, the reference data reveals that there is no actual rainfall during this time. Therefore, the wet predictions185

likely stem from a noisy CML signal.

Overall it must be noted that while the MCC is a useful and balanced metric, its score must be seen in relation to the reference

chosen for evaluation. As weather radar provides average rainfall intensities for the entire radar grid cell, we expect that the

radar rainfall estimates are less intermittent than what is observed by a rain gauge. This is supported by the findings in Figure

3, Figure 4, and Figure 5 where the weather radar rainfall events are less intermittent than what is the case for the rain gauges.190

The CML, like the weather radar, also measures spatially averaged rainfall. However, the CML measures rainfall closer to

the ground and might thus be able to better capture the intermittency as seen by the rain gauge. In this study MLPGA was

able to better detect rainfall events as seen by the rain gauge than MLPRA. This suggests that there is no single best reference

or method for evaluating CML rainy periods. Rather, the CML rain event detection method must be seen in relation to its

application.195

4 Conclusions

In this technical note, we introduced a simple feedforward neural network (MLP) designed to detect intermittent rainfall from

CML signals at a higher temporal resolution compared to existing methods. Our approach involved training the MLPs on

reference data from rain gauges (MLPGA) with a temporal resolution of 1 minute and gauge-adjusted radar (MLPRA) with

a temporal resolution of 5 minutes. Both MLPs outperformed the two reference methods. MLPGA typically predicts rainfall200

shortly after MLPRA and often after the CML total loss has started to increase. Thus, if the MLPGA method is used, the user

should consider setting for instance 5 minutes before and after a wet event to wet, similar to Pastorek et al. (2022). Moreover,

MLPGA better predicts wet periods as recorded at the nearby rain gauges than what is the case for MLPRA, while both methods

perform equally well when radar data is used as reference. Thus, the different methods capture different nuances of the rainfall

patterns.205

Future work may involve further refining the model architecture and testing its robustness in generalization to other datasets.

Another interesting topic could be to better understand how different wet and dry classifications affect the resulting baselines

and the effect this has on rainfall rate estimation from CML data. Overall, both MLPs showed successful skill for the challenge

of rainfall event detection in CML attenuation time series.
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Figure 3. CML signal loss (TL) for a 10-hour long interval and its corresponding confusion matrix (compared to rain gauge reference) and

MCC score for the CNN, σ80, MLPRA, MLPGA methods. The reference wet periods for the rain gauge (RG) and gauge-adjusted radar (RA)

were also plotted. The blue shaded area mark the wet periods and its borders were colored grey to highlight the intermittent behavior.
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Figure 4. CML signal loss (TL) for a 6-hour long interval and its corresponding confusion matrix (compared to rain gauge reference) and

MCC score for the CNN, σ80, MLPRA, MLPGA methods. The reference wet periods for the rain gauge (RG) and gauge-adjusted radar (RA)

was also plotted. The blue shaded area mark the wet periods and its borders was colored grey to better show the intermittent behavior.
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Figure 5. CML signal loss (TL) for a 6 day long interval and its corresponding confusion matrix (compared to rain gauge reference) and

MCC score for the CNN, σ80, MLPRA, MLPGA methods. The reference wet periods for the rain gauge (RG) and gauge adjusted radar (RA)

was also plotted. The blue shaded area mark the wet periods and its borders was colored grey to better show the intermittent behavior. Here

the CNN outperformed the other methods as it was able to better classify the noisy CML signal as dry, which was more in line with the

reference.

12

https://doi.org/10.5194/egusphere-2024-647
Preprint. Discussion started: 4 April 2024
c© Author(s) 2024. CC BY 4.0 License.



Code availability. The MLPRA method and the MLPGA method are available from pycomlink under https://github.com/pycomlink/pycomlink/210

tree/master/pycomlink/processing/wet_dry. An example notebook running the different wet dry classification methods is available under

https://github.com/pycomlink/pycomlink/tree/master/notebooks

Data availability. The rain gauge data was derived from the open data server of the German Meteorological Service and can be found here:

https://opendata.dwd.de/climate_environment/CDC/observations_germany/climate/1_minute/precipitation/.
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